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We obtain a formal solution for a large class of diffusion equations with a spatial kernel dependence in the
diffusive term. The presence of this kernel represents a nonlocal dependence of the diffusive process and, by
a suitable choice, it has the spatial fractional diffusion equations as a particular case. We also consider the
presence of a linear external force and source terms. In addition, we show that a rich class of anomalous
diffusion, e.g., the Lévy superdiffusion, can be obtained by an appropriated choice of kernel.
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I. INTRODUCTION

The diffusive process is one of the most usual processes
in nature and, since the Brown study and Einstein’s first ex-
planation �1�, it has attracted attention in all science fields. In
the last decades, diffusive processes that do not present the
usual asymptotic time dependence on the second moment,
i.e., �x2�� t, have also been related to a large class of physi-
cal systems. Illustrative examples are fluid transport in po-
rous media �2�, diffusion in plasmas �3�, substance trans-
ported in a solvent from one vessel to another across a thin
membrane �4�, asymmetry of DNA translocation �5�, relative
diffusion in turbulent media �6�, cetyltrimethylammonium
bromide �CTAB� micelles dissolved in salted water �7�, sur-
face growth and transport of fluid in porous media �8�, two
dimensional rotating flow �9�, subrecoil laser cooling �10�,
diffusion on fractals �11�, anomalous diffusion at liquid sur-
faces �12�, enhanced diffusion in active intracellular trans-
port �13�, particle diffusion in a quasi-two-dimensional bac-
terial bath �14�, and spatiotemporal scaling of solar surface
flows �15�. Thus the existence of the anomalous diffusion
and its ubiquity has motivated the study of several ap-
proaches, in particular, the ones based on fractional diffusion
equations �16–19� that have intensively been investigated. In
fact, in Ref. �20� the fractional diffusion and wave equations
are discussed, in �21� the boundary value problems for frac-
tional diffusion equations are studied, in Ref. �22� a frac-
tional Fokker-Planck equation is derived from a generalized
master equation, in Ref. �23� the behavior of fractional dif-
fusion at the origin is analyzed, in Ref. �24� a harmonic
analysis of random fractional diffusion-wave equations is
done, in Ref. �25� a fractional Kramers equation is intro-
duced, and in Refs. �26–34� the solutions of the time-
fractional diffusion equations are obtained.

In this Brief Report, we consider the formal solution of a
large class of anomalous diffusion processes described by the
equation

�

�t
P̂�x,t� =

D
�2�

	
−�

�

K�x − x��
�2

�x�2 P̂�x�,t�dx�

−
�

�x
�F�x,t�P̂�x,t�� + ��t�P̂�x,t� , �1�

where K�x� is the kernel which contains a nonlocal depen-

dence, D is the diffusion coefficient, F�x , t� is the external
force, and ��t� is a time-dependent source. Note that, due to
the broadness of Eq. �1�, it encompasses several scenarios of
physical interest such as the distributed fractional diffusion
equations �35�, truncated Lévy flights �36�, and advection-
dispersion equations with a fractional Laplacian operator tak-
ing a general directional mixing measure into account �37�.
In this direction, Eq. �1� may be used to investigate turbu-
lence �38�, anomalous diffusion in disordered media �39�,
and transport in the direction of flow in an aquifer with
heavy tailed distribution �40�.

In this paper, we work out Eq. �1� by taking a general
kernel into account with F�x , t�=−Cx. In particular, we show
how to obtain the generalized solution from the usual one for
the case characterized by the absence of external force.
We also discuss particular cases which emerge from
choices K�x��1/ 
x
1+� and K�x��e−a
x
. These developments
are presented in Sec. II and in Sec. III, we present our
conclusions.

II. DIFFUSION EQUATION

Let us start our analysis by considering Eq. �1� without

external force and subject to the initial condition P̂�x ,0�
=�2���x� and the boundary condition P̂�±� , t�=0. In order
to eliminate the source term of Eq. �1�, we use the change

P̂�x , t�=exp��0
t ��t�dt�P�x , t�, which leads us to the equation

�
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D
�2�
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K�x − x��
�2

�x�2 P�x�,t�dx�. �2�

Note that the above equation reduces to the usual diffusion
equation for the kernel K�x�=�2���x� and other kernels im-
ply a spatially nonlocal correlation. In addition, direct inves-
tigation shows that this diffusion equation can be correlated
with a continuous time random walk for a Poissonian
waiting time probability density function and a jump length

probability density function � given by �̃�k�=1−	Dk2K̃�k�,
where 	 is the characteristic waiting time and K̃�k� is the
Fourier transform �F�¯
= 1

�2�
�−�

� dxeikx
¯ and F−1�¯


= 1
�2�

�−�
� dke−ikx

¯� of K�x�. Thus the presence of this kernel
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in Eq. �2� changes only the jump length probability density
which; depending on the choice, may lead us to a distribution
with long tail or compact behavior. In particular, for the first
case, i.e., the long tail behavior, we may relate the distribu-
tion obtained with a Lévy distribution.

The solutions of Eq. �2� can lead us to cumbersome cal-
culations depending on the choice of the kernel. However, it
is possible to obtain them for a general kernel in terms of the
solutions of the usual diffusion equation by using the Fourier
transform. To show this feature, we consider the usual diffu-
sion equation �tP�x , t�=D�x

2P�x , t�, subject to the same
boundary and initial conditions of Eq. �2�, and the integral
decomposition

P�x,t� =
1

�2�
	

−�

�

P�x�,t�W�x�,x�dx�. �3�

Now, in order to connect Eq. �3� with the solutions of Eq.
�2�, we choose W�x� ,x� related to the kernel K�x� in the

Fourier space as follows: W̃�x� ,k�=exp�ix�k�K̃�k��, where

K̃�k� is the Fourier transform of K�x�, as mentioned above.
Thus we have the solution of Eq. �2� given in terms of the
solution of the usual diffusion equation P�x , t�.

To prove this statement, we can use the Fourier transform

of P�x , t�, P̃�k , t�, and employ the above W̃�x� ,k� leading us
to the following result:

P̃�k,t� =
1

�2�
	

−�

�

P�x�,t�W̃�x�,k�dx�

=
1

�2�
	

−�

�

P̃�x�,t�exp�ix�k�K̃�k��dx� = P̃�k�K̃�k�,t� ,

�4�

where P̃�k , t� is the spatial Fourier transform of P�x , t�. On
the other hand, from the convolution theorem, Eq. �2� be-

comes �tP̃�k , t�=−Dk2K̃�k�P̃�k , t�. Now, considering the
scaling of the distribution in the Fourier space, Eq. �4�, and

introducing the variable w=k�K̃�k�, the previous equation

reduces to �tP̃�w , t�=−Dw2P̃�w , t�, which is the usual diffu-
sion equation in the Fourier space. This means that the solu-
tion of Eq. �2� in the Fourier space can be connected, as we
discussed above, to the solution of the usual diffusion equa-

tion, P̃�k , t�, by the relation P̃�k , t�= P̃(k�K̃�k� , t) and in the
coordinate space by using Eq. �3�. Similar analysis was per-
formed in Ref. �41� for a time dependent kernel and in Ref.
�42� for a fractional time diffusion equation by employing
the Laplace transform.

An interesting result for the density distribution is ob-
tained from the previous developments by considering the

kernel K̃�k�=−
k
� with −2
�
0. In fact, this choice of
kernel leads us to obtain as a solution of Eq. �2� the Lévy
distributions, i.e.,

P�x,t� =
1

2�
	

−�

�

e−
k
2+�Dte−ikxdk , �5�

which enables us to relate it to a continuous random walk
with long jumps described by fractional diffusion equations
which employ spatial derivatives. By performing the above
integral, the solution P�x , t� is given in terms of the Fox H
function �43� as follows:

P�x,t� =
1

�2 + ��
x

H2,2

1,1�� 
x

�Dt�1/�2+���

�1,1�,�1,1/2�

„1,1/�2+��…,�1,1/2�� .

�6�

In the presence of an external linear force term,
F�x , t�=−Cx, we cannot connect the solution of Eq. �1� to the
solution of the usual diffusion equation. But in this case, for
the initial condition, P�x ,0�=�2���x�, we get the formal

solution in the Fourier space, P̃�k , t�,

P̃�k,t� =
1

�2�
exp�−

D
C
	

ke−Ct

k

uK̃�u�du� . �7�

To show this result, note that in the Fourier space Eq. �2�
with linear force becomes

�

�t
P̃�k,t� = − Dk2K̃�k�P̃�k,t� − Ck

�

�k
P̃�k,t� . �8�

Now writing the solution as

P̃�k,t� =
1

�2�
exp�−

D
C
	k

uK̃�u�du��̃�k,t� , �9�

Eq. �8� reduces to

�

�t
�̃�k,t� = − Ck

�

�k
�̃�k,t� , �10�

with the initial condition �̃�k ,0�=exp�D
C �kuK̃�u�du�. To sat-

isfy this initial condition, we can take the solution of �̃�k , t�
as

�̃�k,t� = exp�D
C
	 f̃�k,t�

uK̃�u�du� , �11�

with f̃�k ,0�=k. Substituting Eq. �11� in Eq. �10�, we get that

f̃�k , t� obeys the equation �t f̃�k , t�=−Ck�k f̃�k , t�, which pre-

sents the simple solution f̃�k , t�=ke−Ct. Using this solution in
Eq. �11� together with Eq. �9�, we get the solution Eq. �7�.

Now, let us discuss four special cases of Eq. �7� with C
�0. The first one is the stationary case which can be ob-
tained from Eq. �7� by taking the asymptotic limit t→� into
account. In particular, for this case, the stationary solution

P̃st�k� is

P̃st�k� =
1

�2�
exp�−

D
C
	

0

k

uK̃�u�du� . �12�

Notice that, depending on the choice of the kernel K̃�k� in
Eq. �12�, we may have, for example, a long tail behavior
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characterized by a power-law behavior in the asymptotic
limit or a short tail behavior given in terms of exponentials.
In particular, the solutions which present an asymptotic be-
havior like a power law may be related to the Lévy distribu-
tions. This fact suggests a thermostatics context different
from the usual one, in contrast to the analysis performed in
Ref. �48� for the time fractional diffusion equations. The sec-

ond case is K̃�k�=1 which recovers the usual Ornstein-
Uhlenbeck process �44�,

P̃�k,t� =
1

�2�
exp�−

D
2C

�1 − e−2Ct�k2� , �13�

where its second derivative in k leads to the second moment
�x2�t��=D�1−e−2Ct� /C. The third case is given by the kernel

K̃�k�=− 
k
� that leads us to obtain

P̃�k,t� =
1

�2�
exp�−

D
k
�+2

�� + 2�C
�1 − e−��+2�Ct�� . �14�

This equation is a generalization of the Ornstein-Uhlenbeck
process usually employed to investigate systems which
present anomalous diffusion �45�. Note that Eq. �5�, which
corresponds to the free-force fractional diffusion equation, is
obtained from the above equation in the limit C→0. Another
feature concerning Eq. �14� is that the second moment is not
defined in the range of the parameter � where the distribu-
tion is stable. For the fourth case, we analyze a kernel which
presents an exponential decay, i.e., K�x�=�� /2ae−a
x
 with
a�0. This kernel represents a short range spatial interaction
characterized by the fast decay of the exponential function.

By substituting the Fourier transform of K�x� �K̃�k�
=a2 / �a2+k2�� in Eq. �7� and performing an integration, we
obtain

P̃�k,t� =
1

�2�
�1 −

k2�1 − e−2Ct�
a2 + k2 �Da2/2C

. �15�

From this equation, we can recover the Ornstein-Uhlenbeck
process, Eq. �13�, by taking the limit a→� and obtain the
free-force case for this kernel in the limit C→0. In addition,
due to the short range behavior of the kernel, we obtain an
interesting result to the second moment of the non-Gaussian
distribution given by Eq. �15�. It is exactly the same as the
one previously obtained for the Ornstein-Uhlenbeck process.
This fact illustrates that the normal diffusion may not be
associated with the Gaussian shape of the distribution. The
same possibility was explored in Refs. �46,47� when dealing
with nonlinear diffusion equations with spatial and temporal
dependence on the coefficients. The stationary solution asso-
ciated to Eq. �15� in the real space is

P�x� = �a/���
�a2D/�2C���
2/�a
x
��K��a
x
� ,

with �=1/2−a2D / �2C� where K��x� is a modified Bessel
function.

In Fig. 1, we show the stationary distribution for particles
in the harmonic potential related to the three kernels used: �i�
the delta kernel, corresponding to the usual Gaussian diffu-
sion; �ii� the power law kernel, corresponding to Lévy like

diffusion; and �iii� the exponential kernel, corresponding to
the inverse Fourier transform of Eq. �15�. We have chosen
typical values of parameters C, a, and � which lead us to
different forms for the distributions.

III. SUMMARY AND CONCLUSION

In summary, we have investigated a general nonlocal dif-
fusion equation by considering the presence of a linear ex-
ternal force and a time dependent source term. We show that
it is possible to connect the solution of this nonlocal equation
to the solution of the usual diffusion equation in the absence
of a drift term. In this manner, the solution of Eq. �1� for this
case may be obtained by applying the inverse Fourier trans-
form on the usual solution after performing suitable changes.
In the presence of a drift term, we obtained a formal solution
in the Fourier space for an arbitrary kernel. In particular, for
this case, in the absence of a source term, the solution for
long times presents a stationary distribution which depending
on the choice of the kernel may have a short or a long tail
behavior. In this context, we have also analyzed simple cases

such as K̃�k�=−
k
� and K̃�k�=a2 / �a2+k2�. The first choice
to the kernel leads us to the Lévy distributions which have
the asymptotic behavior characterized by a power law behav-
ior, i.e., P�1/ 
x
1+�̄ and the second moment is not finite. For
the second one, we got a usual time dependence for the sec-
ond moment with a non-Gaussian distribution and the
asymptotic behavior is given by P�e−a
x
 / 
x
1−Da2/2C. Fur-
thermore, the advantage of the formal solution is that, even if
the analytical solution in the coordinates space is not known,
a numerical treatment of the inverse Fourier transform can be
easier than a direct solution of the differential equation.

FIG. 1. Stationary distribution for the diffusion in the harmonic
potential corresponding to the usual Gaussian diffusion �solid line�,
the distribution with a power law kernel �dotted line�, and the dis-
tribution with an exponential kernel �dashed line�. The parameters
used were C=0.5, �=−0.9, and a=1.
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Finally, we hope that the results obtained here may be useful
to analyze a large class of different anomalous diffusive pro-
cesses in specific theoretical and experimental contexts by
the appropriate choice of the kernel.
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