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General solution of the diffusion equation with a nonlocal diffusive term and a linear force term

L. C. Malacarne,1 R. S. Mendes,1 E. K. Lenzi,1 and M. K. Lenzi’

YWniversidade Estadual de Maringd, Departamento de Fisica, 87020-900 Maringd, Parand, Brazil
2Departamento de Engenharia Quimica, Universidade Federal do Parand, Setor de Tecnologia, Jardim das Américas,
Caixa Postal 19011, 81531-990 Curitiba, Parand, Brazil
(Received 19 June 2006; published 17 October 2006)

We obtain a formal solution for a large class of diffusion equations with a spatial kernel dependence in the
diffusive term. The presence of this kernel represents a nonlocal dependence of the diffusive process and, by
a suitable choice, it has the spatial fractional diffusion equations as a particular case. We also consider the
presence of a linear external force and source terms. In addition, we show that a rich class of anomalous
diffusion, e.g., the Lévy superdiffusion, can be obtained by an appropriated choice of kernel.
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I. INTRODUCTION

The diffusive process is one of the most usual processes
in nature and, since the Brown study and Einstein’s first ex-
planation [1], it has attracted attention in all science fields. In
the last decades, diffusive processes that do not present the
usual asymptotic time dependence on the second moment,
i.e., (x?)~1, have also been related to a large class of physi-
cal systems. Illustrative examples are fluid transport in po-
rous media [2], diffusion in plasmas [3], substance trans-
ported in a solvent from one vessel to another across a thin
membrane [4], asymmetry of DNA translocation [5], relative
diffusion in turbulent media [6], cetyltrimethylammonium
bromide (CTAB) micelles dissolved in salted water [7], sur-
face growth and transport of fluid in porous media [8], two
dimensional rotating flow [9], subrecoil laser cooling [10],
diffusion on fractals [11], anomalous diffusion at liquid sur-
faces [12], enhanced diffusion in active intracellular trans-
port [13], particle diffusion in a quasi-two-dimensional bac-
terial bath [14], and spatiotemporal scaling of solar surface
flows [15]. Thus the existence of the anomalous diffusion
and its ubiquity has motivated the study of several ap-
proaches, in particular, the ones based on fractional diffusion
equations [16—19] that have intensively been investigated. In
fact, in Ref. [20] the fractional diffusion and wave equations
are discussed, in [21] the boundary value problems for frac-
tional diffusion equations are studied, in Ref. [22] a frac-
tional Fokker-Planck equation is derived from a generalized
master equation, in Ref. [23] the behavior of fractional dif-
fusion at the origin is analyzed, in Ref. [24] a harmonic
analysis of random fractional diffusion-wave equations is
done, in Ref. [25] a fractional Kramers equation is intro-
duced, and in Refs. [26-34] the solutions of the time-
fractional diffusion equations are obtained.

In this Brief Report, we consider the formal solution of a
large class of anomalous diffusion processes described by the
equation
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where KC(x) is the kernel which contains a nonlocal depen-
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dence, D is the diffusion coefficient, F(x,?) is the external
force, and a(r) is a time-dependent source. Note that, due to
the broadness of Eq. (1), it encompasses several scenarios of
physical interest such as the distributed fractional diffusion
equations [35], truncated Lévy flights [36], and advection-
dispersion equations with a fractional Laplacian operator tak-
ing a general directional mixing measure into account [37].
In this direction, Eq. (1) may be used to investigate turbu-
lence [38], anomalous diffusion in disordered media [39],
and transport in the direction of flow in an aquifer with
heavy tailed distribution [40].

In this paper, we work out Eq. (1) by taking a general
kernel into account with F(x,#)=—Cx. In particular, we show
how to obtain the generalized solution from the usual one for
the case characterized by the absence of external force.
We also discuss particular cases which emerge from
choices K(x) o 1/]x|"** and K(x) o e~l. These developments
are presented in Sec. II and in Sec. IIl, we present our
conclusions.

II. DIFFUSION EQUATION

Let us start our analysis by considering Eq. (1) without
external force and subject to the initial condition f’(x,O)

=\£'E7'5(x) and the boundary condition 13(100 ,0)=0. In order
to eliminate the source term of Eq. (1), we use the change

ﬁ(x,t):exp[ [oe(0)dt]P(x,1), which leads us to the equation
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Note that the above equation reduces to the usual diffusion
equation for the kernel K(x)=v27d(x) and other kernels im-
ply a spatially nonlocal correlation. In addition, direct inves-
tigation shows that this diffusion equation can be correlated
with a continuous time random walk for a Poissonian
waiting time probability density function and a jump length
probability density function N given by A(k)=1-7Dk*K(k),
where 7 is the characteristic waiting time and K (k) is the
Fourier transform (F{-- -}:%T [Z dxe™-- and F Y-}

=%T [Z, dke ™ --) of IC(x). Thus the presence of this kernel
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in Eq. (2) changes only the jump length probability density
which; depending on the choice, may lead us to a distribution
with long tail or compact behavior. In particular, for the first
case, i.e., the long tail behavior, we may relate the distribu-
tion obtained with a Lévy distribution.

The solutions of Eq. (2) can lead us to cumbersome cal-
culations depending on the choice of the kernel. However, it
is possible to obtain them for a general kernel in terms of the
solutions of the usual diffusion equation by using the Fourier
transform. To show this feature, we consider the usual diffu-
sion equation &,P(x,t):D&iP(x,t), subject to the same
boundary and initial conditions of Eq. (2), and the integral
decomposition

1 o]
P(x,t) = ?J P, 0)W(x',x)dx". (3)
\N27J

Now, in order to connect Eq. (3) with the solutions of Eq.
(2), we choose W(x',x) related to the kernel K(x) in the
Fourier space as follows: W(x’,k):exp[ix’k\/la(k)], where
KC(k) is the Fourier transform of &(x), as mentioned above.
Thus we have the solution of Eq. (2) given in terms of the
solution of the usual diffusion equation P(x,?).

To prove this statement, we can use the Fourier transform
of P(x,1), P(k,t), and employ the above W(x' k) leading us
to the following result:

o
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where P(k,1) is the spatial Fourier transform of P(x,z). On
the other hand, from the convolution theorem, Eq. (2) be-
comes ﬁ,ﬁ(k,t)=—Dkzl€(k)ﬁ(k,t). Now, considering the
scaling of the distribution in the Fourier space, Eq. (4), and

introducing the variable w=k K(k), the previous equation

reduces to d,P(w,7)=—Dw?*P(w, 1), which is the usual diffu-
sion equation in the Fourier space. This means that the solu-
tion of Eq. (2) in the Fourier space can be connected, as we
discussed above, to the solution of the usual diffusion equa-

tion, P(k, 1), by the relation P(k,7)=P(k\K(k),?) and in the
coordinate space by using Eq. (3). Similar analysis was per-
formed in Ref. [41] for a time dependent kernel and in Ref.
[42] for a fractional time diffusion equation by employing
the Laplace transform.

An interesting result for the density distribution is ob-
tained from the previous developments by considering the

kernel KC(k)=—|k|* with —2< £ <0. In fact, this choice of

kernel leads us to obtain as a solution of Eq. (2) the Lévy
distributions, i.e.,
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which enables us to relate it to a continuous random walk
with long jumps described by fractional diffusion equations
which employ spatial derivatives. By performing the above
integral, the solution P(x,7) is given in terms of the Fox H
function [43] as follows:

x|

P(x.1) = (D)

(1 ,l/(2+,u)),(1,1/2)]

|
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(6)
In the presence of an external linear force term,
F(x,t)=—Cx, we cannot connect the solution of Eq. (1) to the

solution of the usual diffusion e(ﬂ%tion. But in this case, for
the initial condition, P(x,0)=v278(x), we get the formal

solution in the Fourier space, P(k,1),

- 1 D(k
P(k,t) = E exp| — Ef uk(u)du |. (7)

ke—CI

To show this result, note that in the Fourier space Eq. (2)
with linear force becomes

Jd ~ ~ = d ~
—P(k,t) = — DK*K (k) P(k,t) — Ck—P(k,1). (8)
ot ok
Now writing the solution as
- 1 D (% .
P(k,t)=—=exp| - = | uK(u)du|p(k,1), 9)
N2 C
Eq. (8) reduces to
Jd J
—plk,t) = - Ck—pl(k,1), 10
p tp( ) akp( ) (10)

with the initial condition ﬁ(k,O):exp[% I kul&(u)du]. To sat-
isfy this initial condition, we can take the solution of p(k,?)
as

D (fkn
plk,1) =exp{Ef ulC(u)du} , (11)

with f(k,0)=k. Substituting Eq. (11) in Eq. (10), we get that
flk,1) obeys the equation &f(k,t):—Ckc?kf(k,t), which pre-
sents the simple solution f(k,7)=keC". Using this solution in
Eq. (11) together with Eq. (9), we get the solution Eq. (7).

Now, let us discuss four special cases of Eq. (7) with C
>0. The first one is the stationary case which can be ob-
tained from Eq. (7) by taking the asymptotic limit — o into
account. In particular, for this case, the stationary solution
P (k) is

~ D(k _
P,(k)=— expl— Ef ulC(u)du} ) (12)

1
2w 0

Notice that, depending on the choice of the kernel K(k) in
Eq. (12), we may have, for example, a long tail behavior
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characterized by a power-law behavior in the asymptotic
limit or a short tail behavior given in terms of exponentials.
In particular, the solutions which present an asymptotic be-
havior like a power law may be related to the Lévy distribu-
tions. This fact suggests a thermostatics context different
from the usual one, in contrast to the analysis performed in
Ref. [48] for the time fractional diffusion equations. The sec-

ond case is K(k)=1 which recovers the usual Ornstein-
Uhlenbeck process [44],

- 1 D
P(k,1) = ex [—— | —e2¢ kz], 13
( oy p 2C( ) (13)

where its second derivative in k leads to the second moment
x*(1)y=D(1-e72¢")/C. The third case is given by the kernel

KC(k)=—|k|* that leads us to obtain
D|k|,u+2
(u+2)C

~ 1
P(k,t) = = exp[— (1- e_("“z)a)] . (14)
N2

This equation is a generalization of the Ornstein-Uhlenbeck
process usually employed to investigate systems which
present anomalous diffusion [45]. Note that Eq. (5), which
corresponds to the free-force fractional diffusion equation, is
obtained from the above equation in the limit C— 0. Another
feature concerning Eq. (14) is that the second moment is not
defined in the range of the parameter u where the distribu-
tion is stable. For the fourth case, we analyze a kernel which
presents an exponential decay, i.e., K(x)=17/2ae " with
a>0. This kernel represents a short range spatial interaction
characterized by the fast decay of the exponential function.

By substituting the Fourier transform of K(x) [K(k)
=a’/(a*+k?)] in Eq. (7) and performing an integration, we
obtain

201 _ -2Cn | pd?i2C
{1—]‘(1 - )} . (15)

~ 1
P(k,1) = oy R
From this equation, we can recover the Ornstein-Uhlenbeck
process, Eq. (13), by taking the limit a— o and obtain the
free-force case for this kernel in the limit C— 0. In addition,
due to the short range behavior of the kernel, we obtain an
interesting result to the second moment of the non-Gaussian
distribution given by Eq. (15). It is exactly the same as the
one previously obtained for the Ornstein-Uhlenbeck process.
This fact illustrates that the normal diffusion may not be
associated with the Gaussian shape of the distribution. The
same possibility was explored in Refs. [46,47] when dealing
with nonlinear diffusion equations with spatial and temporal
dependence on the coefficients. The stationary solution asso-
ciated to Eq. (15) in the real space is

P(x) = {a/[\ 7T (a*DI(20)) 1}2/(alx]) 'K (alx]),

with v=1/2-a’D/(2C) where K,(x) is a modified Bessel
function.

In Fig. 1, we show the stationary distribution for particles
in the harmonic potential related to the three kernels used: (i)
the delta kernel, corresponding to the usual Gaussian diffu-
sion; (ii) the power law kernel, corresponding to Lévy like
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FIG. 1. Stationary distribution for the diffusion in the harmonic
potential corresponding to the usual Gaussian diffusion (solid line),
the distribution with a power law kernel (dotted line), and the dis-
tribution with an exponential kernel (dashed line). The parameters
used were C=0.5, u=-0.9, and a=1.

diffusion; and (iii) the exponential kernel, corresponding to
the inverse Fourier transform of Eq. (15). We have chosen
typical values of parameters C, a, and u which lead us to
different forms for the distributions.

III. SUMMARY AND CONCLUSION

In summary, we have investigated a general nonlocal dif-
fusion equation by considering the presence of a linear ex-
ternal force and a time dependent source term. We show that
it is possible to connect the solution of this nonlocal equation
to the solution of the usual diffusion equation in the absence
of a drift term. In this manner, the solution of Eq. (1) for this
case may be obtained by applying the inverse Fourier trans-
form on the usual solution after performing suitable changes.
In the presence of a drift term, we obtained a formal solution
in the Fourier space for an arbitrary kernel. In particular, for
this case, in the absence of a source term, the solution for
long times presents a stationary distribution which depending
on the choice of the kernel may have a short or a long tail
behavior. In this context, we have also analyzed simple cases
such as K(k)=—|k|* and K(k)=a®/(a>+k?). The first choice
to the kernel leads us to the Lévy distributions which have
the asymptotic behavior characterized by a power law behav-
ior, i.e., P~ 1/|x|"*# and the second moment is not finite. For
the second one, we got a usual time dependence for the sec-
ond moment with a non-Gaussian distribution and the
asymptotic behavior is given by P~e‘“‘x|/|x|1‘D“2/ZC. Fur-
thermore, the advantage of the formal solution is that, even if
the analytical solution in the coordinates space is not known,
a numerical treatment of the inverse Fourier transform can be
easier than a direct solution of the differential equation.
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Finally, we hope that the results obtained here may be useful
to analyze a large class of different anomalous diffusive pro-
cesses in specific theoretical and experimental contexts by
the appropriate choice of the kernel.
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